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ERROR CONTROL FOR DIGITAL DATA 

TRANSMISSION OVER TELEPHONE NETWORKS 

ABSTRACT 

This report presents the results of a study of error control techniques applicable 
to binary digital data transmission over commercial telephone networks.   The 
investigation consisted of a study of error control algorithms, a compilation of 
the error statistics for digital data on telephone lines, an evaluation of the per- 
formance of the error control techniques when applied to these error statistics, 
and a survey of the state-of-the-art in the hardware development of error 
control devices. 

The main objectives of this study have been a determination of the performance 
to be expected from these error control algorithms when applied to the actual 
error statistics of common carrier voice bandwidth communication channels and 
the feasibility of implementing these techniques. 

An additional purpose of this report is to provide communication engineers and 
managers with an introduction to the important considerations for selection and 
evaluation of error control techniques. 
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SECTION I 

INTRODUCTION 

Despite major improvements in the quality of digital data modems and 

transmission facilities, the resulting data error rates are still not adequate for 

satisfying the stringent specifications which are being set forth for some com- 

munication systems.    The purpose of this report is to describe the feasibility of 

reducing this error rate by the application of error control techniques to digital 

data transmission over telephone voice communication channels. 

This study was undertaken to satisfy a need for a simplified explanation of 

error control techniques, and a need to know how this technology can be 

expected to perform against real error distributions. 

The obvious reason for coding is to achieve a bit error rate which would 

be impossible otherwise.    In addition, it is conceivable that an overall cost 

reduction could be realized by combining the use of error control with modems 

and channels that are not the best available or with reduced transmitter powers. 

Section II of this report describes the basic coding theory and capabilities 

of several coding techniques which are most applicable to digital data trans- 

mission on the telephone system.   Section HI discusses the error statistics used 

for the evaluation of the various coding techniques.   Section IV presents the 

results of the application of the coding algorithms to the collected data and 

compares the performances of these codes.    Section V briefly discusses the 

state-of-the-art hardware development for implementing these codes. 

This report is designed to serve as a guide to communication system 

engineers in determining which of the available error control techniques are 

best suited to a particular system, and in the writing of specifications to 

incorporate these techniques. 



SECTION II 

DESCRIPTION OF CODING ALGORITHMS 

This section describes several error control techniques, all of which are 

for application to binary digital traffic.    There are two basic philosophies to be 

considered:   forward error correction and detection/correction with retrans- 

mission (commonly called ARQ).    All these techniques require that additional 

bits be added to the information bits which make up the message.    These 

additional bits are variously termed "parity, "   "check, "   or "redundant"   bits. 

Basically, the only difference between the various coding techniques is the 

manner in which these parity check bits are generated and in their capabilities 

for handling errors.    Thus, there are two criteria for evaluating these codes. 

The first is the capability to control (detect and/or correct) the errors.    The 

second is the basic efficiency, or rate, of each code, which for the purpose of 

this report is defined as the ratio of the number of information bits to the total 

number of bits in a message.    When calculating the efficiency of error detection 

and retransmission schemes, the number of bits rejected due to a block in 

error and the number of bits necessary for retransmission signaling must be 

taken into account.    This efficiency, the ratio of total information bits delivered 

to total bits transmitted, is referred to as   "throughput. " 

SIMPLE PARITY CHECK TECHNIQUES 

Although some of the coding schemes discussed in this section could be 

utilized for forward error correction, their correcting ability is extremely 

limited.    Therefore, these techniques find practical application only for error 

detection, with correction by retransmission. 



Character Parity 

The simplest parity check scheme involves dividing the binary data stream 

into groups and summing the digits modulo two without carry.     A parity check 

bit is then added to make the sum, including the check bit, either odd (odd parity) 

or even (even parity).   As an example, consider the three 7-bit characters in 

Table I. 

Table I 

Character Parity 

Parity Parity 

Odd Parity Check Bit Even Parity Check Bit 

ml 
110 110 1 0 110 110 1 1 

m2 

m 

0 0 0 0  110 

10  10  10  1 

1 

1 

0 0 0 0 110 

10 10  10  1 

0 

0 

The 7-bit information character is now transmitted as an 8-bit character. 

Both the odd parity scheme and the even parity scheme are capable of detecting 

an odd number of errors in the 8-bit character, but will not detect an even 

number of errors.    This technique can, of course, be utilized for characters of 

any length.    The efficiency, or rate, for the example shown is 7/8 or 0. 875. 

Modulo two addition without carry: 0+0 = 0 
1+0 = 0 

0+1 = 1 
1+1 = 0 



Block Parity 

This technique, also referred to as horizontal and vertical parity checking 

or character and block parity checking, consists of arranging the data into an (n 

by m) rectangular matrix (n bits per character and m characters per block) and 

then applying the simple parity scheme described previously to each column and 

each row of the matrix resulting in an (n + 1) by (m + 1) matrix (see Figure 1). 

This coding scheme could now be used for correcting a single bit error within a 

block, since a single bit error can be uniquely located.   However, this technique 

is utilized mainly for error detection.   All odd numbers of errors within the 

block will be detected.    In addition, most of the arrangements of the even number 

of errors will also be detected. 

HORIZONTAL   PARITY 
OR BLOCK PARITYV 

m \ 

INFO 

BITS 

\L 
VERTICAL   OR  CHARACTER 

PARITY 

1 
1 
1 

_J 
_J 
_l 

Figure 1,   Block Parity Checking Matrix 



The simplest example of where this technique would fail to detect is the 

occurrence of four errors arranged so that there are two errors in each of two 

rows and two errors in each of two columns as shown in Figure 2. 

Figure 2.     Failure of Block Parity 

X X 
X X 
X X X X 

a- 

1 < 

An excellent analysis of this type of error detection technique has been pre- 

sented in the literature.   Some of the important results of that analysis are included 

in this report.   Table II presents the probability of accepting a block in error and 

the corresponding undetected bit error rate for blocks with character dimension 

(n + 1)=8, as a function of block size (m + 1) and initial bit error probability (p). 

The block parity technique can be used for a block of any desirable dimension. 

The results presented in Table II are for 8-bit characters because these are exten- 

sively sued in two data transmission languages (Fieldata and ASC II).    The 

eighth bit for each of these is a parity bit. 



Table II 

Block Parity 

Line Prob, of 
Block Size Basic Error Accepting a Block Undetected 

[(n+ 1)   x   (m+ 1)] Efficiency Rate in Error Bit Error Rate 

[ 8 x 20] 0.831 io-2 5.6   x IO"5 1.4 x IO"6 

io-3 5. 35 x IO"9 1.3 x 10~10 

io"4 5. 19 x 10~13 -14 
1. 3 x 10 

io'5 -17 
5.32 x 10 1.3 xl0"18 

[8 x 40] 0.853 io"2 2. 29 x IO"4 2.9 x IO"6 

io"3 2. 19 x 10~* 2.7 x IO"10 

io"4 2. 19 x IO"12 2.7 x IO"14 

io"5 2. 19 x 10~16 2.7 x IO"18 

[8 x 60] 0.860 io"2 5.29 x IO"4 4. 3 x IO"6 

io"3 4. 97 x 10~8 4. 1 x IO"10 

io"4 4. 97 x IO"12 -14 
4. 1 x 10 

io"5 -18 
4. 96 x 10 4.1xl0"18 

[8 x 80] 0.864 io"2 9. 19 x IO"4 -6 
5.7 x 10 

io"3 8. 88 x IO"4 5.5 x 10~10 

io"4 8. 84 x 10~12 -14 
5.5 x 10 

io"5 1 R 
8. 84 x 10" 

— 18 
5.5 x 10 

[8 x 100] 0.866 io'2 1.44 x 10~3 7.2 x 10~ 

io"3 1. 39 x 10~7 6. 9 x IO"10 

io'4 1.39 x IO*11 -14 
6. 9 x 10 

io"5 1. 33 x 10~15 6. 9 x 10~18 



The basic efficiency of the block parity scheme is 

n x m 
(n + 1)   x (m + 1) 

Binary Count Parity Check 

This technique is similar to the block parity check in that data is again 

grouped into some convenient character size (n) and then a number of these 

characters   (m)   are arranged into a block as shown in Table III. 

Table III 

n = 5 

10   110 

110   10 

m = 6 0   110   1 

10   110 

10   111 

0   1111 

(check) character 

Binary Sun Q                   1    ] .110   0   1 

5-bit compleme at 0   0   110 

A binary sum is then taken of the block, and a check character is formed 

by taking the complement of the first  n  lowest order bits in the sum.    At this 

receiver, the summing process is repeated on the  m  characters, and this sum 

is added to the complement generated at the transmit end.    In the absence of any 

errors in transmission, the 5-state counter would contain all ones (11111). 



The presence of any zeros would indicate an error.    This type of error detection 

would be particularly effective against errors which are limited to one type, 

either ones changing to zeros or zeros to ones, but not both. 

Even limiting the consideration of errors to those of one type, it is obvious 

that because the check character is limited to only  n bits, as few as two errors 

in the highest order bit column would cause this technique to fail.    Two methods 

are available for obviating this' difficulty.   The first would be to allow the check- 

ing character to include all the bits of the binary sum.   This would cause a 

decrease in code efficiency by increasing the redundancy.    A better technique 
n r»        1 

consists of changing the cycle of the  n-stage binary counter from  2     to  2        : 
r <y\ r» _ 1 

It can be shown.       that this technique would require  2 errors of a single 

type in any given column before it would fail to detect.    The coding efficiency of 

this technique is 

n x m 
n  x   (m + 1) 

Other Parity Check Techniques 

Many variations of these coding techniques have been presented in the 

literature.    These include   "stacking"   many matrices, each of which employ 

vertical and horizontal parity checking and generating parity checks in a third 

dimension.    This results in an additional matrix which consists entirely of 

parity check bits. 

Another variation is spiral parity checking, which is most easily explained 

by referring to Table IV, utilizing odd parity for both the character parity and 

the spiral block parity.    The spiral block parity checks are formed by following 

the arrows.    For the sake of clarity, only two of the six spiral parity bits are 

shown. 



Table IV 

Spiral Block Parity 

Vertical 
Character Parity- 

Checks 

1 

( ) 

( ) 

1 

( ) 

( ) 

Spiral 
Block Parity 

Checks 

This technique has the same error probabilities as those presented for the 

regular horizontal and vertical parity check technique.    The two methods differ 

only in the patterns of error that they will detect. 

POLYNOMIAL (BLOCK CYCLIC) CODES 

This class of codes is characterized by a high degree of algebraic structure, 

in which each code can be mathematically described in terms of a generator 

polynomial.  L  -I   Any group of binary digits can be expressed as a polynomial, with 

the binary digits as the coefficients of this polynomial.    For example, the message 
7       4 

10011011   can be represented by the polynomial    M(x)  =   x   + x   + 
o 76^4.^910 

x   + x + 1 (i. e. ,  1- x   + 0- x   + 0- x   + 1- x   + 1- x   + 0- x   + l« x   + 1- x ).    The 

polynomial codes are   (n, k) block codes, where blocks of k  information bits are 

mapped into blocks of  n  bits by appending   (n - k)   redundant bits.    Representing 

the block of  k  information bits by the polynomial   I(x),   the encoding process 
n-k 

consists of multiplying this polynomial by a factor   x        and dividing it by   P(x), 



a generator polynomial.    The remainder, R(x), is then the polynomial represent- 

ing the   (n - k)   check bits which are appended to the informatL n bits to form the 

message polynomial   M(x).    It can be shown that the resulting message polynomial 

M(x)   is evenly divisible by   P(x).    At the decoder, the received message is divided 

by   P(x).    If a non-zero remainder exists, then errors have occurred.   If the code 

is to be used for error correction, each correctable pattern of errors would need 

a different remainder which would be associated with the pattern.    Complete 

discussions of the coding algorithm, including the factors to be considered in 
\3 4 5l 

choosing the generator polynomial,    P(x),   are available in the literature. 

The term cyclic is derived from the fact that a cyclic shift of any code 

word is itself a code word.    For example, if 1011010   is a code word, then 

0101011   is also a code word.    This cyclic, algebraic structure of these codes 

gives rise to a relatively simple method for implementing them.    The generator 

polynomial associated with each code gives rise to a fundamental block size and 

fundamental values for the number of check bits within a block.    However, it is 

possible to shorten any of these codes by reducing the total number of bits within 

a block while maintaining a constant number of check bits.    These shortened 

cyclic codes are then   (n - i,   k - i)   block codes. 

Not all of the codes to be described in this section satisfy the description 

given above for cyclic codes.    However, these codes are equivalent in performance 

to the cyclic codes and like cyclic codes are easily implemented. 

Hamming Codes 

The Hamming codes are among those which are not truly Polynomial codes 

and are not cyclic.    However, they are included here because many of the con- 

cepts involved in cyclic coding can easily be explained by refer ing to these 

codes. 

10 



These codes are a class of single error correction  (SEC)   or single error 

correcting - double error detecting  (SEC - DED) codes developed in 1950 by 
[6l Dr. R. W. Hamming. He proved that a single bit error within a block of 

(n)  binary bits consisting of  (k)   information bits and  (m = n - k)   check bits 

could be corrected if the following relationship held: 

2m > m + k + l     . (1) 

Consider, as an example, information messages consisting of four bits 

each   (k = 4).    The minimum value of  m  which satisfies the above relationship 

is  m = 3.    Therefore, there exists a   (7, 4)   code which is capable of correcting 

single errors.   If the messages were  5 bits each, the minimum value of  m 

would be 4, which results in a   (9, 5)   SEC   code.    However, 4 check bits are 

capable of correcting single errors in blocks up to 15-bits long, which corresponds 

to message lengths of 11 bits.    When the equality of Equation (1)   is met, the 

codes are referred to as optimum codes, and the block length is a maximum for 

a given number of check bits. 

k      4 
Using the   (7, 4) code as an example, there are  2   =2   =16  possible 

messages with four information bits.    These are shown in Table V.    The coded 

form of these messages employing the Hamming algorithm is also shown, with 

the parity bits and information bits labeled accordingly.    Because the intent of 

this report is to consider the practical capabilities of the coding techniques and 

not the coding algorithms themselves, no attempt is made to describe the logic 

equations used in deriving the individual parity bits.    However, the reader 

interested in this theory, can refer to the literature.l   '   ' 

There are now 16 possible 7-bit words that can be transmitted.    The in- 

dividual bit values of each of these words differ in at least three bit positions from 

the values of any other word.    The number of bit positions in which two words 

11 



differ is defined as the Hamming distance or the distance between the words.   As 

a corollary, the minimum distance which can exist between any two code words 

in a group is referred to as the minimum distance of this code.   Thus, the minimum 

distance of the code considered is three, and this minimum distance for an   (n, k) 

block code determines its error correction or error detection capabilities.   In 

order for any block cyclic code to correct  t  or less errors in a block of size n, a 
(■3] 

minimum distance between code words of   (2t + 1)   is necessary. 

Table V 

Hamming Code 

I _I 1 J. p p ± p _I ± J_ 

ml 
0 0 0 0 0 0 0 0 0 0 0 

m2 
0 0 0 1 1 1 0 1 0 0 1 

m3 
0 0 1 0 0 1 0 1 0 1 0 

m4 
0 0 1 1 1 0 0 0 0 1 1 

m5 
0 1 0 0 1 Ü Ü 1 1 0 0 

m6 
0 1 0 1 0 1 0 0 1 0 1 

m7 
0 1 1 0 1 1 Ü 0 1 1 0 

m8 
0 1 1 1 0 0 0 1 1 1 1 

m9 
0 0 0 1 1 0 0 0 0 

mio 0 0 1 0 0 1 0 0 1 

mil 
0 1 0 1 Ü 1 0 1 0 

mi2 
0 1 1 0 1 0 0 1 1 

mi3 
1 0 0 0 1 1 1 0 0 

mi4 
1 0 1 1 0 0 1 Ü 1 

mi5 
1 1 0 0 0 0 1 1 0 

mi6 
1 

(a) 

1 1 1 1 1 

(b) 

1 1 1 

12 



For error detection only, to detect  D  or less errors, the minimum dis- 

tance is   (D + 1).    To simultaneously correct  t  errors and detect  D> t  errors, 

the minimum distance is   (t + D + 1). 

Returning to the   (7, 4)   SEC   code in the example, because there are 

(   j -   7   ways for a single error to change a given word   (where (     J is the 

number of ways of getting    t    errors in a block of    n bits), each of the 16 

possible receiver choices must have (     J = 7   other words associated with it, 

which,  if received, will be interpreted as that word   (see Table VI).    When two 

errors occur within a 7-bit word, the receiver can no longer properly correct 

because a double error in any word will be understood as a single error in some 

other word.    For example, a double error which changes  m.   from   1000011 

to   10_10001   would be interpreted as a single error which changes   m      from 

1010101   to   1010001. 

Table VI 

Hamming Correction 

in 

0000000 

1000000 
0100000 
0010000 
0001000 
0000100 
0000010 
0000001 

m 
4 

1000011 

0000011 
1100011 
1010011 
1001011 
1000111 
1000001 
1000010 

m!4 m!6 
1010101   1111111 

0010101   0111111 
1110101   1011111 
1000101   1101111 
1011101   1110111 
1010001   1111011 
1010111   1111101 
1010100   1111110 

If the function of a Hamming code is changed from  SEC  to one of error 

detection only, it will be capable of detecting all single or double errors which 

occur in a block.    In addition, since only  2     possible words can be correct 

13 



words, and there are  2    possible words that can be received, the probability of 

failing to detect any word in error may be approximated as: 

n n - k v ' 
2 2 

The basic coding efficiency or rate of this code is   (n - k)/n. 

If the Hamming   (7, 4) code was used for error detection only, it would 

detect all blocks that have either one or two errors and the probability of failing 
3 

to detect a block in error would be   1/2     =   1/8   =  0. 125.    The basic efficiency 

would be   4/7   =   0.571. 

If the Hamming (15,  11)   code was used for error detection only, it would 

again detect all blocks with one or two errors, but now the probability of failing 
4 

to detect a block with more than two errors would be   1/2     =   1/16   =  0. 0625. 

The basic efficiency would be   11/15   =  0. 733. 

The Hamming   (SEC-DED)   codes are derived by adding an additional parity 

bit to the 7-bit code word developed for the previous example.    This increases the 

minimum distance of the code to four. 

Bose-Chaudhuri Codes 

This class of codes is a generalization of the Hamming algorithm.    They 

provide for correcting multiple errors in a block.    These codes are polynomial 

(n, k)   block, cyclic codes which correct  t   errors in a block of length   n = 2     - 1 

with the number of check digits   (n - k)  < mt.    When implemented for error cor- 

rection,  as in the Hamming codes, there are  2     possible choices that the decoding 

process has for interpreting the  n bit block received, and there are  2     possible 

n bit sequences that could be received when the signal has been perturbed by noise. 

If the code is designed for  t  or less error correction, then there are 

14 



ways in which  t  or less errors may alter a given  n bit code word.   The receiver 

must assign to each of the  2     possible words 

+ .  .  .  . 

other words,  each of which differ in  t  or less bit positions from a given word 

and thus can be interpreted as that word. 

This requires a minimum distance between code words of (2t + 1), which 

can be realized with these codes.    If the function of these codes is changed to 

error detection only, all blocks with   D = 2t  or less errors will be detected, 

since to detect a block with  D   errors requires a minimum distance of   (D + 1). 

In addition, the probability of failing to detect blocks with more than  D  errors 

can again be approximated as   2 /2     =   1/2 

Because of the cyclic nature of these codes, an additional error detecting 

ability is available which is not present in Hamming algorithm.    It has been 
[3] 

shown       that in an  (n, k)   cyclic code, no burst of errors of length   (n - k)   or 

less can change one code word into another.    For the purpose of this report, the 

length of a burst will be defined as the total number of bits between, and including, 

the first error in a block and the last error in that block, where the bits between 

these errors may or may not be in error.    This ability can be illustrated by 

referring to Table VII, which shows the same   16 information words used in the 

previous example, now encoded as a   (7, 4) block cyclic code with information 

and parity bits labeled accordingly.    Insert a burst of length   7-4 = 3  or less 

in any word and note that it does not change into one of the other words. 

15 



Table VII 

Block Cyclic Code 

p p p I I I I 

0 Ü 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 1 1 0 0 0 1 

0 0 1 0 1 1 0 0 0 1 0 

0 0 1 1 1 0 1 0 0 1 1 

0 1 0 0 1 1 1 0 1 0 0 

0 1 0 1 1 0 0 0 1 0 1 

0 1 1 0 0 0 1 0 1 1 0 

0 1 1 1 0 1 0 0 1 1 1 

0 0 0 1 0 1 1 0 0 0 

0 0 1 1 1 0 1 Ü 0 1 

0 1 0 0 1 1 1 0 1 0 

0 1 1 0 0 0 1 0 1 1 

1 0 0 0 1 0 1 1 0 0 

1 0 1 0 0 1 1 1 0 1 

1 1 0 1 0 0 1 1 1 0 

1 1 1 1 1 1 1 1 1 1 

In terms of burst errors, the probability of not detecting blocks with 

bursts greater than   (n - k)   is   2 '   If the burst length   (b)   is equal to 

(n - k + 1)   and  2 "(n " k)   if b > (n - k + 1). 

It is also possible to use these codes for burst error correction; however, 

for this case, the relationship between the burst length corrected, and the number 

of parity bits is not well defined.    It has been shown that, in order for an (n, k) 

block code to correct bursts of length  b   or less, at least  2b  parity check 
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[3] symbols are necessary. c      In general, the burst length that these codes can cor- 

rect lies in the range of   1/3  to   1/2   times   (n - k),   the number of check bits. 

These codes can also be modified, so that the full capability of error cor- 

rection is not utilized.    This excess capability can then be used for simultaneous 

error detection for errors in excess of those corrected.    For example, a   (31, 11) 

Bose-Chaudhuri code has a minimum distance of 11.   It could, therefore, be im- 

plemented to correct up to five or less errors in the 31-bit block.   It could also be 

used for error detection only, in which 10 or less errors could be detected for 

certain, with the probability of failing to detect blocks with more than 10 errors 

equal to 

If, however, this code is used to correct only single and double errors, it can 

still detect all blocks with six or less errors. The probability of failing to de- 

tect a block with more than six errors would now be approximately 

*k teM3;) * ra] ,-„. (1 + 31 + 465) 

2 2 

497 497       m -4 
=  ^k=^Ä5xl° • (3) 

2 2 

To provide an insight into the capabilities of the Bose-Chaudhuri codes, 

some are shown in Table VIII, with the minimum distance, the maximum number 

of errors corrected, the maximum number of errors detected for sure, the prob- 

ability of failing to detect blocks with more than this amount of errors, the burst 

size that is detectable, the probability of failing to detect blocks with longer 

bursts and the basic efficiency, or rate, of each code. 
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Table VIII 

Bose-Chaudhuri Codes 

Code d t D Pn.d b Qn. d. 
Basic 

Efficiency 

(7,4) 3 1 2 0.125 3 0.156 0.571 

(15,11) 
(15,   7) 

3 
5 

1 
2 

2 
4 

0. 0625 
0. 39 x 10"' 

4 
8 

0.068 
0. 45 x 10 

0.733 
0.467 

(23,12) 7 3 6 0. 49 x 10~3 11 0.53 x 10"3 0.522 

(31,26) 
(31,21) 
(31, 16) 
(31, 11) 

3 
5 
7 

11 

1 
2 
3 
5 

2 
4 
6 

10 

0.031 
0.98 xlO 
o. 3i x io" ■; 
0. 95 x 10 

5 
10 
15 
20 

0.032 
0. 10 x 10 
0. 32 x 10 
0.10 x 10" 

0.839 
0.677 
0.516 
0.355 

1 (63,57) 
(63,51) 
(63, 45) 
(63, 39) 

3 
5 
7 
9 

1 
2 
3 
4 

2 
4 
6 
8 

0.016 
0. 24 x 10 
0. 38 x 10 
0. 60 x 10~ 

6 
12 
18 
24 

0. 016 
0.25 x 10 
0.47 x 10 
0. 61 x 10" 

0.905 
0.810 
0.714 
0.619 

(127, 120) 
(127, 113) 
(127, 106) 
(127,99) 
(127, 92) 

3 
5 
7 
9 

11 

1 
2 
3 
4 
5 

2 
4 
6 
8 

10 

0. 78 x 10"^ 
0. 61 x 10 
0.48 xlO"^ 
0. 37 x 10~® 
0. 29 x 10" 

1- 
2 
2 
3! 

7 
1 
1 
3 

0. 79 x 10"^ 
0. 62 x 10 
0. 48 x 10 
0.38 x 10" 
0. 29 x 10" 

0.945 
0.890 
0.835 
0.780 
0.724 

• 

wh ere d = minimum d Lsta nee 
t = number of random errors correctable 
D = number of random errors detectable 

Pn. d. = Approx. prob, of not detecting blocks 
with more than D errors 

b = burst size detectable 
Qn. d. = Approx. prob, of not detecting blocks 

with longer bursts. 
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Table VIII 

(Concluded) 

Code D Pn.d. Qn. d. 
Basic 

Efficiency 

(255,247) 
(255,239) 
(255,231) 
(255,223) 
(255,215) 

3 
5 
7 
9 

11 

1 
2 
3 
4 
5 

2 
4 
6 
8 

10 

0. 39 x 10 
0. 15 x 10 
0. 60 x 10 
0.23 x 10 
0.91 x 10 

-2 
-4 
-7 
-9 
-12 

16 
24 
32 
40 

0. 39 x 10 
0. 15 x 10 
0. 60 x 10 
0.23 x 10 
0.91 xlO 

-2 
-4 
-7 
-9 
-12 

0.969 
0.937 
0.906 
0.875 
0.843 

(511,502) 
(511,493) 
(511,484) 
(511,475) 
(511,466) 
(511,457) 
(511,448) 

3 
5 
7 
9 

11 
13 
15 

1 
2 
3 
4 
5 
6 
7 

2 
4 
6 
8 

10 
12 
14 

0.20 xlO 
0. 38 x 10 
0.75 x 10 
0. 15 x 10 
0.28 x 10 

-2 
-5 
-8 
-10 
-13 

9 
18 
27 
36 
45 
54 
63 

0.20 x 10 
0. 38 x 10 
0." 75 x 10 

0.15 x 10 
0.28 x 10 

-2 
-5 

-10 
-13 

0.982 
0.965 
0.947 
0.930 
0.912 

=3~ 
-6 
-9 
-12 

(1023,1013) 
(1023, 1003) 
(1023,993) 
(1023,983) 

3 

5 
7 
9 

1 
2 
3 
4 

2 
4 
6 
8 

0.98 x 10 
0. 95 x 10 
0.93 x 10 
0.93 x 10 

-3 
-6 
-9 
-12 

10 
20 
30 
40 

0. 98 x 10 
0. 95 x 10 
0.93 x 10 
0.91 xlO 

0.990 
0.980 
0.971 
0.961 
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Fire Codes ^3'8^ 

This group of block cyclic codes are burst error detecting and correcting 

codes discovered by P.  Fire in 1959.    In general, these codes have the following 

characteristics.   With a block size  n = c (2     - 1), a burst of size  b  can be cor- 

rected, and a burst of size  d >   b  can simultaneously be detected if  m > b 

and  c   >  (b + d - 1).    The number of parity check bits necessary is (c + m).    For 

detection alone, these codes can detect any combination of two bursts if the length 

of the shorter burst is  < m   and the sum of the lengths is <    (c + 1).    They can 

also detect any single burst of length  <  (c + m), the number of parity checks. 

For error correction only, to correct bursts of length  b   or less, both  c   and 

m   must be   > b. 

As mentioned previously, these codes can be modified to fit any block size 

m,   by shortening the code.    For example, a Fire code can be generated which has 
5 

m = 5   and   c = 9.    The length of this code is   n = 9 (2   - 1) = 279 bits,  of which 

(m + c) = 14   are parity check bits and it is capable of correcting burst lengths up 

to 5 bits long.    If, however, it was desired to encode the messages into blocks 

consisting of 200 information bits, this code could be shortened by simply omit- 

ting 65 of the 265 information bits that can be included in this code.    This results 

in a   (214, 200)   block code capable of correcting bursts up to 5 bits long. 

Other Block Codes 

There are many other binary codes of the (n, k)  block type which have been 

discussed in the technical literature.    However,  since all of the codes either 

closely approximate, or are special cases of those previously described, they 

are not discussed in any detail.   Among these additional algorithms are the 
[Ql [9] 

Reed-Müller codes and burst correcting codes developed by both Abramson 

and Reiger. The capabilities of the Golay   (23,  12) code have been included 

as a special case of the Bose-Chaudhuri codes listed in Table VIII. 
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Implementation of the Block Cyclic Codes 

One of the most attractive features of these block cyclic codes is the ease 

with which they may be implemented.    The encoding can be accomplished with a 

feedback shift register of  (n - k)   stages and a small number of modulo two adders 

(i.e.,  EXCLUSIVE-OR gates).    The  k  information bits are shifted through this 

register and simultaneously transmitted through the channel.   When the  k  in- 

formation bits have been transmitted through the register, the   (n - k)   stage 

register then contains the   (n - k)   parity bits associated with the particular 

message transmitted.   The contents of this register are then transmitted to com- 

plete the  n bit block.    For error detection, the decoder is identical to the 

encoder.    The entire  n  bit message is shifted through the register.    If no error 

has occurred, the register contains   (n - k)   zeros.    The presence of any one 

indicates the block had errors.    For error correction, the same encoder is again 

used, but the decoder becomes much more complex, requiring a memory 

capability.    For this and other reasons to be discussed in later sections, these 

codes are utilized mainly for error detection purposes. 

CONVOLUTIONAL CODES 

The main difference between convolutional codes (also referred to as re- 

current codes) and those previously described is the lack of block structure.    In 

this case, the parity check bits are generated and interleaved with the informa- 

tion bits in a continuous processing of the information bits through a shift 

register.    Since a completely acceptable theoretical derivation of these codes 

has not been developed, the concepts involved in this type of coding will be 

explained by referring to examples.    This coding technique can be applied for 

both random and burst error correction. 
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Two different techniques for decoding these recurrent codes exist.    One of 

these is the sequential decoding technique developed by Wozencraft. l^]    In this 

technique, one information symbol is decoded at a time by comparing a sequence 

of received symbols to each sequence of two sets of possible transmitted sequences, 

one starting with a zero and the other starting with a one.   The distance (as 

defined on page 12) between the received sequence and the possible transmitted 

sequences then determines the set in which the received sequence belongs, and 

thus determines the value of the first symbol of the received sequence.   This 

symbol is then discarded from the received sequence and a new last symbol 

read in, and the process is repeated. 

When the received sequence has been so corrupted by noise that a satis- 

factory decoding decision cannot be made, then a decoding failure can be noted 

and a retransmission can be initiated.    For sequential decoding, it can be shown 

that the probability of an uncorrected error occurring approaches zero exponen- 

tially as the length of the computation increases linearly.!-^J     A disadvantage 

of this scheme is the variation in the time required to decode a symbol, which 

depends on the amount of errors present. l2J 

A sequential decoding device has been developed, but, it is presently 

attractive only for experimental purposes due to its complexity. 

The second decoding technique for these codes is threshold decoding, a 

bit-by-bit majority rule technique developed by Massey.'     '     Although this 

scheme is less effective than sequential techniques, ease of implementation has 

led to its use in the development of new devices.    The examples of convolutional 

codes discussed in this report are concerned with this decoding technique. 

A description of the operation of a convolutional encoding and decoding 

device based on a 0. 5 rate code follows.    Consider the convolutional encoder 
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illustrated in Figure 3.   A continuous stream of information bits is fed into the 

shift register and simultaneously into the communication channel and to a parity 

check generator.    This is a modulo two adder which sums the current information 

bit with the previous third, fourth and fifth information bits and puts out a parity 

check bit. 

9'8'7 

10101010 

6 P5i6P4i4P3«3P2i2Pli1 

010001000110110011 

Figure 3.    Convolutional Encoder 

This parity check bit is then transmitted immediately after the associated 

information bit.    At the instant illustrated in the diagram,   i_   is just entering 
6 

the channel and  p    is being determined.    In the next bit interval,   i    will be 
c l 

shifted out of the register and discarded.    As an example of this technique, 

consider the 9-bit message   101010101   shifted into the encoder from right to 
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left.    Assuming that the shift register initially contained all zeros, the encoded 

form of this message reading from right to left would be 

i 
9 

1      0 

i 
8 

0       0 

i. i 
6 

0      0 

4 

0       1 

J3 

1      0 

2 

0      1 

p9 P8 yl y6 P5 P4 P3 P2 *1 

At the receiver, the data stream is separated into the original stream of 

information bits and a stream of parity bits.   The information bits are fed into a 

shift register which is identical to that used for encoding.    However, now the 

modulo two adder has, as an additional input, the received parity check bits. 

Thus, if there have been no errors in transmission, the output of this adder will 

be a parity check bit added to itself (i. e., zero).   The presence of a one in the 

output of the adder represents an error in transmission.    In order to correct 

errors by threshold decoding, the output of this adder is fed into another shift 

register as shown in Figure 4. 

< 

'6 '5 u '3 j2 M 
PS'S^'T i 

J 

p T0       > 
USER 

*6 S5 S4 S3 S2 81 

< 
\ ' f         N '        1 t > 

THRESHOLD   LOGIC 

Figure 4.    Convolutional Threshold Decoder 

24 



Because the input to this register will be zero except when  errors occur, 

the contents of these registers will be the errors that have occurred.    For ex- 

ample, consider the moment illustrated in Figure 4.    The first six of the 

interleaved information and parity bits have already entered the decoder.   The 

contents of the six stages of the shift registers are then given by the following 

relationships: 

S1  =   E(ix)  +   Eft^) , 

54 =   Efl^   +   E(i4)   +   E(p4), 

55 =   ECy   +   E(i2)   +   E(i5)   +   E(p5), 

S2   +    S6   =   E(ix)   +   E(i3)   +   E(i6)   +   E(p2)   +   E(p6). 

where   E(i.)   or   E(p.)   is a one only if  i.  or  p.  was in error,  and is zero 
J J J J 

otherwise. 

The stages of the shift register examined by the threshold logic device are 

picked so that each logic equation formed will contain  E(i.)   once.    At the same 

time every other   E(i.)   and   E(p.)   appears at most once in the entire set of 
J J 

equations.    In the example under consideration, the decoder is attempting to 

determine the correct value of information bit  i .   Assuming that there are two 

or less errors in the 11 bits which are contained in these equations, a decision 

on the value of  E(i )   can be made by the following rule.    If three or four of the 

sums shown equal one, then   E(i )   will be considered a one and bit  i    will be 

considered in error. 

The logic circuit is implemented to correct  i     as it leaves the register 

and simultaneously correct all the  S   stages which contain   E(i ).    This thresh- 

old decoding scheme can be shown to always give a correct decision as long as 

no more than two errors are present in any 12 consecutive bits (6 information 

bits and 6 parity bits).   In addition, it can correct some of the error patterns 
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containing more than two errors.   Since the decoder at any time is examining 6 

information bits and 6  parity check bits, this code is said to have a constraint 

length of 12. 

The principles illustrated in the previous example apply to codes with 

various constraint lengths and various rates.    Some typical constraint lengths 

with the number of errors within each length that are guaranteed to be corrected 

are listed in Table IX. 

Table IX 

Convolutional Codes 

Efficiency Constraint Errors 
(Rate) Length Corrected 

0.5 12 2 

0.5 24 3 

0.5 44 4 

0.5 68 5 

0.5 104 6 

[141 
Kohlenberg has devised a scheme for utilizing these codes for long 

burst error correction which he has labeled diffuse convolutional coding.   This 

consists of taking a code such as just described and extending the constraint 

length over a long sequence of bits, only a few of which are utilized to compute 

the value of the parity check bit.    For example, consider the rate one-half code 

which is capable of correcting bursts up to 168 bits long.    This code requires an 

encoder consisting of 336 stages.    For generating parity check bits, registers 1, 

84,  168, and 336 are taped and added as in the previous example through the 

modulo two adder.    The decoder again consists of an identical shift register for 
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regenerating the parity check bits.   The shift register for storing the error bits 

is also  336  stages long.   The logic equations used in this case are as follows: 

S1      =  Eflj)  +   E(Pl), 

S169  "   E(V  +   E<W  +   E(P169> > 

S0„  =   E(i)  *   E(i    )    +   E«      )  +   E(p„„), 

S336  =   E(il>  +   E(i84)    +    E(i168)  +   E<W  +   E(P336> 

The very same threshold logic applies in this case.    If either three or 

four of the  S   equations equal one, bit   i    will be assumed to be in error. 

Again, this scheme will give a correct decision as long as no more than two 

of the bits in the above equations are in error.    The constraint length of this 

code is 672 bits.    A burst of errors less than 168 bits long (information bits 

plus parity bits) can affect at most only two of the bits associated with the four 

logic equations.    Thus, this code is capable of correcting bursts up to 167 bits 

long, as long as the burst is preceded and followed by an error free guard space 

of 505 bits.    However, it is possible to also correct bursts of this length if 

there are errors in the guard space, as long as the error pattern is such so 

that no more than two of the bits included in the logic equation at any time are 

in error. 

These coding techniques can be extended to include various burst sizes 

and various coding rates.    Some of these codes which have been developed are 

listed in Table X.    The only limiting factor in the size of the burst that these 

codes can correct is the size of the registers necessary for implementation. 
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Table X 

Diffuse Convolutional Codes 

Code Rate Burst Length Corrected Constraint Length 

1/2 

2/3 

3/4 

168   n bits 

85   n  bits 

45   n bits 

672   n bits 

~ 680   n  bits 

~ 540   n  bits 

where  n = 1, 2, 3  
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SECTION III 

TELEPHONE LINE ERROR STATISTICS 

In order to evaluate the operating performances of the various coding 

techniques available, it is of course necessary to consider the error statistics 

of the transmission channels.   Although several mathematical models for error 

statistics on telephone circuits have been proposed,      ' '      they are still very 

limited in practical application.   Therefore, the determination of coding perform- 

ances still requires an analysis of the raw error statistics of the telephone 

channel. 

BUIC MODEM TEST STATISTICS 

During the past year, a series of tests were conducted at The MITRE 

Corporation for evaluating a digital data modem for application to the SAGE and 
[17] 

BUIC Air Defense System.   As a result of these tests, a large amount of 

error statistics for digital data transmission on the switched telephone networks 

were collected.   Some of the details of these tests are briefly discussed. 

The statistics were collected for a 2600 bit-per-second, 4-phase data 

modem over looped line circuits from Bedford, Mass. , to various cities through- 

out the United States and back.    Only one data input channel was utilized, so that 

the effective data rate was 1300 bits per second.    Bit-by-bit error statistics 

were collected using the Lincoln Laboratory ADDER.    In addition, chart record- 

ings were made for correlating data errors to variations in the line signal, and 

error totals on a per minute basis were also recorded. 

-5 
The overall error rate excluding signal dropouts was   1 x 10    .    However, 

approximately 20 percent of the calls experienced some degree of loss of service 
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and the errors that occurred during these periods accounted for over 90 percent 

of the total number of errors recorded in these tests.   The major cause of these 

dropouts is believed to be fades in the microwave carrier sections of the tele- 

phone network.   It seems reasonable to assume that most long-haul telephone 

circuits will utilize microwave links and therefore the effect of the fades should 

be taken into account when evaluating coding techniques. 

By including the errors occurring during these dropouts, the overall bit 
-4 

error rate was approximately 5 x 10    .   This includes the measured error 

statistics for dropouts up to 83 seconds in length.   In over 300 hours of data 

transmission studied, there were 12 occasions where the error bursts were 

greater than 20 seconds in duration.   Removing these errors from the statistics 
-4 

results in an overall bit error rate of about  2 x 10    . 

For the purpose of evaluating code performances, a representative sample 

of calls was selected for further processing.   There were 69 calls of about 

45 minutes each selected for this sample.   The selection of calls to be used was 

somewhat arbitrary and was based on the following factors:   availability of bit- 

by-bit error distributions from the ADDER program, and inclusion of error 

bursts of lengths ranging from 140 milliseconds (184 bits) to 1. 7 seconds 

(2200 bits).    Table XI presents the statistics for the complete test program and 

for the test calls used in this analysis.    The averages for the calls used are 

better than the average for the complete program.    Because the lines tested were 

looped to various cities throughout the country, they were, on the average, at 

least twice as long as the average long-haul communication link.    This, plus the 

fact that the tested lines received no special treatment that might lead to im- 

proved data transmission, makes the choice of these improved statistics closer 

to what seems reasonable for an actual long-haul data circuit. 
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Table XI 

Summary of Test Statistics 

All Calls Study 

Percentage of Calls 
With Dropouts 20 ±i    -16 

69 

Total Error Rate 
With Dropouts 

-4 
2 x 10 5.4 x 10~ 

Without Dropouts 1. 1 x 10"5 0. 68 x 10~5 

Ratio of Dropout Errors 
to Total Errors 0.925 0.874 

The raw data for the test calls was then grouped into blocks corresponding 

to some of the basic block sizes for the cyclic codes listed in Table VIII   and the 

errors in each block were tabulated.    These results are presented in Table XII 

and discussed in Section IV.   Some of these same blocks were tabulated with 

respect to burst size within blocks in error (see Table XIII). 

Because of limited storage in ADDER, it was not possible to obtain a bit- 

by-bit error distribution for bursts of errors greater than 64 bits.   However, by 

examining the minute counters, and the chart recordings, a bit-by-bit error 

distribution could be synthesized which is believed to be very accurate. 

COMPARISON WITH OTHER ERROR STATISTICS 

To obtain an independent check on the results of this study, a literature 

survey was performed to gather additional information on telephone line error 
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Table XII 

Block Error Statistics Including Dropouts 

CO 

Total Bits:   2.51 x10^ 

Total Bit Errors:   13,629 

Bit Error Rate:   5. 4 x 10~5 

Block 
Size 

Total 
Blocks 

Total 
Blocks 
with 
Errors 

Block 
Error 
Rate Number of Blocks With This Many Errors 

1 2 3 4 5 6 7 8 9 10 11 112 13 14 15 16 17 18 19 20 >20 

15 1.67 x 107 2062 1.2 x 10~4 401 120 76 92 41 47 41 28 775 436 3 1 0 1 

23 1.03 x 107 1545 1.5 x 10"4 363 102 55 60 31 31 40 28 21 9 9 9 225 244 172 79 66 0 1 

31 8. 09 x 106 1314 1. 6 x 10"4 345 106 57 51 30 29 22 20 15 5 8 26 8 6 4 7 2 4 375 193 1 

63 3.99 x 106 928 2. 3 x 10~4 307 93 46 42 20 24 28 15 11 3 2 3 5 7 4 5 0 3 2 3 305 

127 
6 

1.98 x 10 718 3. 6 x 10"4 277 85 36 36 23 13 23 17 11 5 1 7 1 1 4 6 2 0 1 169 

255 9. 85 x 105 608 6. 2 x 10"4 233 86 42 33 26 16 19 21 5 4 1 7 0 1 3 1 6 0 1 1 102 

511 4. 92 x 105 533 1. 1 x 10"3 214 78 38 29 23 23 17 17 9 4 2 6 2 1 2 1 1 0 0 0 66 

-9 
Total Bits:   2.54 x 10 

Total Bit Errors:   25,000 
_5 

Bit Error Rate:   1 x 10 

Block Error Statistics From Reference 20 

127 
7 

2    x 10 2118 1. 1 x 10~4 402 297 169 106 85 85 85 14« i 42 21 30 30 30 30 30 26 26 26 26     1 26 398 



Table XIII 

Burst Lengths of Blocks in Error 

CO 
CO 

Block 
Size 

Number Of Blocks With This Burst Length 

i 2 3 4 5 6 7 8 9 10 11 12 13 11 15 16 17 18 19 20 21 22 23 24 25 2G 27 28 29 30 ^30 

15 401 70 59 35 50 25 41 36 14 17 251 267 273 261 262 

23 363 57 40 25 43 19 32 22 11 14 20 13 9 9 10 6 7 6 15 208 206 208 202 

127 277 46 30 13 26 10 18 16 5 2 11 0 12 5 8 6 0 0 3 2 2 1 2 7 1 0 1 1 1 2 210 

Burst Error Statistics From Reference 20 

127 402 106 169 17 17 17 17 17 17 17 24 24 24 24 24 45 45 45 45 45 15 15 15 15 15 15 15 15 15 15 817 1 



statistics.    There have been a number of studies conducted to measure the error 

rates for digital data transmission on standard telephone circuits.      '     '     ' 

These tests have utilized a number of different modems and have been 

conducted on a variety of different circuits ranging from wire and cable links of 

slightly over 100 miles to circuits using microwave links with a length of over 

4000 miles.   All of these reports indicate that the characteristics of the tele- 

phone circuits for data transmission can be generalized as consisting of relatively 
-5 

long periods of good transmission capabilities with bit error rates of   1 x 10 

or better,  separated by periods of extremely high error rates, the frequency and 

duration of which are a function of the circuit length and type of transmission 

facility.    In reference 20, over 500 hours of data collected on a 1300-bits per 

second modem on both microwave and  K-carrier telephone lines is presented 

in block sizes corresponding to three of the Bose-Chaudhuri basic block lengths. 

The results of this study for a block size of 127 are included in Tables XII and 

XIII.    The values listed are only approximate, because they were extrapolated 

from distribution curves. 

Based on comparison with these statistics, the statistics analyzed in 

Section II are believed to be a good approximation of what can be expected on 

1000-to 3000-mile digital data links over standard telephone cable and micro- 

wave circuits. 
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SECTION IV 

APPLICATION OF CODING TECHNIQUES 

As mentioned in Section II, there are two basic functions that may be per- 

formed in order to overcome the effects of errors in digital data transmission, 

forward error correction and error detection with correction via retransmission. 

Various coding techniques for performing these functions have been described. 

It is now necessary to evaluate these techniques when they are applied to actual 

error patterns that have been found on telephone circuits. 

ERROR DETECTION AND RETRANSMISSION 

This type of correction scheme has as a basic requirement a two-way 

communicating ability between the data link terminals.    In addition, it requires 

that the transmitter store every group of data that it transmits until it is sure 

that the data was received correctly. 

There are various schemes which have been developed to perform the re- 

transmission function of the error control.    These range from systems which 

send either an accept or reject signal back to the transmitter after receiving 

each block, to systems which notify the receiver only when a block has been 

detected in error and only the errored block has to be transmitted.    For the 

purpose of evaluating the effects of errors on the throughput (defined on page 2) 

of these codes, an idealized system is assumed where only the blocks in error 

are retransmitted and the total bits of any block detected in error is considered 

as redundant.    In actual practice, the throughput of any of these techniques is 

less than those determined here because of such factors as signaling and synchro- 

nization bits and delay times in the communication link. 
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Error Detection with Parity Check Techniques 

By referring to Table XII for block sizes of   15, 23, and 31, and noting that 

a simple single parity bit technique would detect all blocks with an odd number of 

errors, it is seen that about 65 percent of the blocks (i. e., characters) in error 

are detected, with the errors in these blocks accounting for about 60 percent of 

the total errors.   This is about 2. 5:1 reduction in the undetected errors.    The 

basic efficiency of these three examples is 0. 933, 0. 957 and 0. 968 respectively. 
-4 

Because the block error rate for each of these three blocks is about 1 x 10    , the 

effect on efficiency of the detected blocks in error which are discarded is negli- 

gible,  (i. e. , the throughput « the efficiency). 

The performance of the horizontal and vertical block parity techniques when 

applied to these statistics can be estimated by referring to Table II.    For the bit 
-5 

error rate of 5. 4 x 10    , the corresponding undetected block error rates for 
-10 -10 

block sizes of 160,  320, 480, 640 and 800 are approximately 2. 8 x 10      , 6 x 10 
-10 -9 -9 

8. 6 x 10 "   ,  1. 2 x 10     and 1. 5 x 10    , respectively.   Here again, since the 
-4 -3 

block error rate varies from 1 x 10     to 1 x 10    p the effect of discarded blocks 

on the efficiency is negligible.    Thus, for the idealized retransmission scheme 

assumed, the throughput is approximately equal to the basic efficiency.    This 

error detection technique is presently used in the AUTODIN system using eighty 
-7 

8-bit characters per block.   An undetected character error rate of 1 x 10     is 
[21] 

quoted for this system. This appears to be a very conservative estimate, 
_3 

based on a bit error probability of about 5 x 10    .    For the statistics of 

Table XII, the undetected character error rate would be about 5 x 10 

Error Detection with Polynomial Codes 

The cyclic codes offer the most effective techniques for error detection. 

As described earlier, these codes can be implemented to not only detect, for 
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certain, all blocks with a given amount of errors or a given error burst, but 

also to detect, with a high probability, all blocks in error. This latter capa- 

bility is the most important. 

Upon investigating the block error statistics compiled in Tables XII and 

XIII, it becomes evident that the blocks detected for certain represent less than 

an order of magnitude improvement in the block error rate and only a small im- 

provement in the overall bit error rate.    For example, consider the  (127, 106) 

Bose-Chaudhuri code, which is capable of detecting blocks in error that have up 

to 6 errors, and blocks which have bursts of errors up to 21 bits long.    From 

Table XII, this results in 470 of the 718 blocks in error (i. e. , 65 percent) being 

detected.    From Table XIII, the burst lengths of 6 or less have been included 

in the 470 having 6 or less errors.    The only additional blocks detected for cer- 

tain because of the burst detecting ability of the code are those which have bursts 

of lengths 7   to  21   and have more than 6 errors.   It is not evident from the 

tables, but for the data analyzed, this accounted for only 43 additional blocks 

detected for certain.   Therefore, about 71 percent of the blocks in error are 

detected for certain.   However, this accounts for only 1259 of the 13, 629 bit 

errors or only about 9 percent of the total bit errors.    For the data presented in 

Table XII, this same code would result in certain detection of about 54 percent 

of the blocks in error which accounts for only about 11 percent of the total bit 

errors.   If it is assumed that half of the blocks with burst lengths between 7 and 

21 have more than 6 errors, then about 65 percent of the blocks in error will be 

detected, accounting for about 18 percent of the total bit errors. 

The real value of these codes lies in their ability to detect with a high 

probability, any block in error.    Considering the previous example, of the 205 

remaining blocks in error accounting for 91 percent of the bit errors in one data 

sample and the 753 blocks accounting for 82 percent of the total bit errors in 

the second sample, the probability that these blocks will not be detected is 
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21 —6 
approximately 1/2     « 0. 5 x 10    .     Therefore, the undetected block error rate 

-4 -11 
is reduced from   3. 6 x 10     to 5. 2 x 10        for the first case and from 

-4 -12 
1. 1 x 10       to  9. 4 x 10        for the second sample. 

Figure 5 shows the undetected bit error rates with the corresponding effi- 

ciencies for some of the Bose-Chaudhuri codes when applied to the statistics 

obtained from the BUIC Tests.   These error rates have been calculated by 

assuming only those blocks with  2t  or less errors have been detected for certain, 

while those with more than the 2t errors are detected with a probability of 

VI - 1/2      / .    Also included are the expected undetected error rates and 

efficiencies of some of the horizontal and vertical parity check blocks. 

There are many factors involved when deciding what block code is the most 

optimum.   Most of the factors will involve the characteristics of the particular 

data link under consideration such as message formatting, types of traffic, 

desired error rate and desired efficiency.   As in Figure 5, the longer the block, 

the higher the efficiency and the lower the undetected bit error rate.    However, 

there may often be many other factors which preclude the use of a long block. 

FORWARD ERROR CORRECTION 

Although the block cyclic codes possess an error correcting ability, the 

effect of these codes in reducing the error rate when employed in this fashion 

is almost negligible.   As was pointed out in Section IV, the errors detected for 

certain represent only a small percentage of the total errors.   Since the error 

correcting ability of these codes is limited to less than half of their ability to 

detect for certain, the reduction of the overall error rate when using these 

codes for error correction is even less than the reduction obtained with the 

blocks detected for certain.    For example, consider the statistics for the block 
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size of 127 presented in Table XII.    Even if an efficiency of about 50 percent 

(i. e. ,  127, 64) was used, only those blocks with 10 or less errors could be 

corrected.    This results in only 73 percent of the blocks in error corrected and 

a reduction of the bit error rate of only 10 percent.    Fontaine and Gallagher 

in discussing the error correcting ability of the cyclic codes when applied to the 

statistics they collected for a block size of 511, point out that in order to get an 

order of magnitude improvement in the block error rate at least 161 parity 

checks would be necessary.     They further point out that this would result in less 

than a 2:1 reduction in the bit error rate,  and that the amount of equipment re- 

quired would prohibit their use except for very unusual circumstances.   From 

the error correcting ability of these codes listed in Table VIII and the statistics 

of Table XII, the same conclusions hold for any of the possible block cyclic codes. 
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Block Codes When Applied to Statistics Obtained from BUIC Tests 
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The evaluation of the convolutional burst error correcting codes is not 

possible using the block error statistics of Table XII.   This requires an analysis 

of the error statistics as a function of time.   For example, in order to evaluate 

the error correcting ability of the code which is capable of correcting bursts of 

errors up to 168 bits long at 2400 bits per second, the raw error statistics must 

be analyzed to determine the relative occurrence of error bursts in excess of 

70 milliseconds.    For the error statistics collected on the switched network 

during the BUIC modem test, this occurred about once every 4 hours.   When 

the considerations discussed in Section III are taken into account, it is estimated 

that the performance of these codes for a 1000- to 3000-mile digital data link 

over conventional telephone circuits will be an uncorrectable burst of errors 

about once every 24 hours. 

SUMMARY OF CODE PERFORMANCES 

It has been shown that for the statistics considered in this study, both the 

block parity codes and the block cyclic codes are capable of reducing bit error 

rates by three or four orders of magnitude with an efficiency of 80 percent or 

better, when used in conjunction with retransmission techniques.    It has also been 

shown that these codes are not effective for forward error correction.   The for- 

ward burst error correcting codes are capable of reducing the bit error rate by 

about two orders of magnitude with an efficiency of 50 percent. 
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SECTION V 

IMPLEMENTATION OF CODING TECHNIQUES 

Within the past few years, a number of devices for implementing these 

coding techniques have been developed.   Most of this effort has been concerned 

with implementing the error detection codes with correction by retransmission. 

ERROR DETECTING CODING DEVICES 

As mentioned previously, the AUTODIN system utilizes the block parity 

technique in an ARQ system.    Devices utilizing the block cyclic codes have also 

been developed and tested.    Among these is a   (31, 21) code that was tested at 

2000-bits per second over the direct distance dialing network. L    J   During the 
7 9 

test, approximately 6. 36 x 10     31-bit code words or   1. 97 x 10   bits were 

transmitted.    There were  29,731  blocks in error accounting for  62,002  bit 
-5 -4 

errors for a bit error rate of   3.19 x 10      and a block error rate of 4. 67 x 10    . 

Of the 29, 731 blocks in error, only two went undetected. 

1*231 
Another device L        which has been built utilizes the   (255, 231) code. 

Laboratory tests simulating on-line conditions were performed in which over 
6 

3 x 10    blocks in error were correctly detected without any undetected erroneous 

words.    Laboratory tests simulating high level random noise conditions were also 

performed.   Over 5 x 10   blocks in error were detected without a single block 

in error going undetected.   This same device was also tested for a total of 1515 

hours on toll-grade telephone circuits in the New England area.   During this 

time 6, 707 blocks were detected in error with no undetected erroneous words. 
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A device for implementing a   (1023, 993)   cyclic code has been tested on 
r 241 

commercial telephone circuits at a bit rate of 1200 bits per second.L     J    The 

results of these tests are shown below in Table XIV. 

Table XIV 

Error Correcting Code Test Results 

Loop 
Blocks 

Transmitted 
Blocks 

in Error 

Undetected 
Blocks 
in Error 

Fullerton, Calif. , to 

Los Angeles and return 10,000 180 0 

Fullerton, Calif., to 

St.  Louis, Mo. , and 

return 10,000 250 0 

Fullerton, Calif. , to 

New York City and return 20,000 400 0 

An encoder which allows for automatically varying the redundancy of the 

blocks has also been developed. >■    ^     This utilizes a fixed number of parity bits 

(i. e. , 20) and varies the block length from 40 bits   (i. e.,    rate = 0. 5)   to 260 bits 

(i. e. ,  rate = 0. 92).    No test results of this device have been made available. 

FORWARD ERROR CORRECTING DEVICES 

The only forward error correcting device which has been implemented and 

tested on telephone circuits is the diffuse convolutional code which corrects bursts 
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up to 168 bits long with a rate of  0.5. 
[26] 

A similar rate  0. 5   device with a 

burst correcting capability of   1 second with a 4-second constraint length has also 
[271 

been implemented and tested. However, these tests were performed on 

tropospheric circuits and are not discussed in this report.   The tests on the de- 

vice capable of correcting bursts up to 168 bits long were performed on a 107. 6 

mile telephone circuit at a transmission rate of 2400 bits per second.   The tests 

were conducted for over 1137 hours during which time approximately   10      bits 

were transmitted.    There were four occasions when the device failed to correct 

errors.    Two of these were complete line outages of more than 15 minutes.    The 

remaining two bursts contained 406 and 449 errors respectively.    Between these 

bursts, there were a total of 815 errors that were corrected.    This device had 

an additional capability of detecting those times when it failed to correct.   The 

results of this test have been summarized as follows:   An uncorrectable burst 

of errors occurred on an average of once every 12 days and these bursts were 

detected.    However, these tests were performed on a relatively short circuit 
-7 

which had an overall bit error rate of   1. 63 x 10       which is at least two orders 

of magnitude better than what can be expected for 1000-to 3000-mile circuits. 
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SECTION VI 

CONCLUSIONS 

As a result of this study, it is evident that techniques exist for reducing the 

bit error rates for digital data transmission over commercial telephone circuits 

to any desired degree of accuracy and efficiency using error detection and re- 

transmission schemes.   Because these circuits presently have relatively good 

error rates, the retransmission blocks in error will not seriously affect the 

throughput of data.    For those circumstances where retransmission of data is not 

practical, there are available forward error correcting devices which can be 

expected to reduce the bit error rate by about two orders of magnitude. 

The error detection and retransmission schemes can reduce the undetected 

bit error rate of even the poorer grades of data transmission circuits many orders 

of magnitude.    It is believed that the estimate presented in Section IV for the per- 

formance of the forward error correcting codes is somewhat optimistic and would 

apply only to special dedicated links using the best available equipment. 

It is also conceivable, that since many of the longer bursts of errors could 

be detected by other means   (i. e., monitoring the received signal power), this 

could be utilized in conjunction with forward error correction to reduce the num- 

ber of retransmissions.    In general, the reduction of retransmissions by this 

technique would not be significant if the cyclic codes were used for this purpose. 

It would, however, greatly reduce the number of retransmissions necessary if it 

was used in conjunction with the convolutional burst error correcting codes. 

However,  since this requires that a retransmission ability be available for use at 

any time, and since the error detection schemes provide such a high undetected 

bit error rate, this would appear to be applicable to only a very few special cases. 

44 



Finally it is to be stressed that this study concerned itself with statistics 

for conventional telephone circuits of wire-line and microwave links and that the 

performance of these circuits is such as to make retransmission techniques 

highly efficient.   In situations where performance is not as good   (e. g.,   HF 

radio and tropo circuits)  no conclusions should be drawn from this study. 

Ä.iP. <Q-n;( 
D. R.  O'Neil 
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